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We explore the effects of a quadratic drag, similar to that used in bulk aerodynamic formulas, on the
inverse cascade of homogeneous two-dimensional turbulence. If a two-dimensional fluid is forced
at a relatively small scale, then an inverse cascade of energy will be generated that may then be
arrested by such a drag at large scales. Both scaling arguments and numerical experiments support
the idea that in a statistically steady state the length scale of energy-containing eddies will not then
depend on the energy input to the system; rather, the only external parameter that defines this scale
is the quadratic drag coefficient itself. A universal form of the spectrum is suggested, and numerical
experiments are in good agreement. Further, the turbulent transfer of a passive tracer in the presence
of a uniform gradient is well predicted by scaling arguments based solely on the energy cascade rate
and the nonlinear drag coefficient. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630054#

I. INTRODUCTION

The feature that most distinguishes two-dimensional tur-
bulence from its three-dimensional counterpart is the pres-
ence of an inverse cascade of energy~see, e.g., Vallis1 or
Danilov and Gurarie2 for reviews!. Kraichnan3 was the first
to predict that the inverse cascade should have ak25/3 energy
spectrum, and there have since been a number of simulations
that do show such a well-developed spectrum as well as, in
some circumstances, some nonuniversal behavior~Frisch and
Sulem,4 Maltrud and Vallis,5 Babianoet al.,6 Danilov and
Gurarie,7 Boffettaet al.,8 and Smithet al.9!. To obtain such a
statistically steady universal spectrum in a finite domain
there must be a frictional process that acts at large scales to
halt the transfer of energy before the domain scale is reached
as well as a good scale separation between the forcing scale
and the frictional scale.

Normally ~and especially in three-dimensional flows!,
frictional processes are considered to act at very small scales
by way of molecular viscosity. Two-dimensional turbulence
is a particular limit of quasigeostrophic turbulence that in
turn arises in rapidly rotating, stratified flows.~There are
some differences between quasigeostrophic flow, but at
scales comparable to and larger than the deformation radius
geostrophic turbulence theory suggests that the energy is
transferred into the barotropic mode of the quasigeostrophic
system, and this obeys the two-dimensional vorticity
equation—see Salmon.10!

In such flows, Ekman layers generally exist at horizontal
boundaries and, if the viscosity is uniform, their effects may
be parametrized by a linear drag. Using such a drag in two-
dimensional turbulence appears to be effective in arresting
the inverse cascade in a smooth fashion, giving a well-

defined 25/3 inertial range between the forcing and fric-
tional scales.~Sukorianskyet al.11 document the possible pit-
falls of using a less physical inverse hyperviscosity.! If the
boundary layer is turbulent, then frictional effects are caused
by vertical fluxes of horizontal momentum in three-
dimensional turbulence. This has a much smaller spatial
scale and much faster time scale than the nearly two-
dimensional flow above the boundary layer, suggesting the
use of a spatially varying eddy viscosity to parametrize the
Reynolds stresses. This in turn leads to a quadratic drag to
parametrize the bulk frictional effects of the boundary layer,
rather than a linear drag, and, indeed, it is common practice
to parametrize a well-mixed planetary boundary layer in this
way ~see, e.g., Holton12 for more details!. Note that the two-
dimensional flow should then be considered the mean veloc-
ity, and the presence of the underlying surface defines the
coordinate system in which the particular drag formulation is
valid.

This form of drag is particularly interesting from a
scaling-theory perspective, because the drag increases in
strength as the intensity of the turbulence increases, and scal-
ing arguments~given in Sec. III! suggest that the stopping
scale isindependentof the intensity of the forcing. In this
paper our goal is to test this and other scaling predictions,
and investigate whether the use of a quadratic drag is a ro-
bust and sensible notion in two-dimensional turbulence.

II. EQUATIONS OF MOTION

The momentum equation for constant density two-
dimensional flow is

]u

]t
1u"“u52“p1F2D, ~1!

whereu is the velocity,p is the pressure, andF andD rep-
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resent forcing and frictional terms and the density is taken to
be one. Because the flow is incompressible, it is convenient
to take the curl, giving the vorticity equation

]z

]t
1u"“z5Fz1Dz , ~2!

whereFz5k"curlF andDz5k"curlD. There are two param-
etrizations of the friction that we wish to focus on. One is the
conventional linear drag, parametrizing an Ekman layer with
constant diffusivity,

D52ru, ~3!

so that

Dz52r z, ~4!

where r has dimensions of inverse time. The second is the
quadratic drag,

D52Cduuuu, ~5!

so that

Dz52CdS ]uuuv
]x

2
]uuuu

]y D , ~6!

whereCd has dimensions of inverse length. It is a combina-
tion of the usual nondimensional frictional parametercd and
a boundary layer thicknessh, Cd5cd /h. As noted in the
Introduction, this form of drag emerges in the parametriza-
tion of the turbulent atmospheric boundary layer. The mean
flow, which we explicitly model, has large space and time
scales and is strongly influenced by rotation so that its dy-
namics are approximately two dimensional. The fast compo-
nent of the flow, on the other hand, has small spatial and time
scales, is three dimensional, and it interacts with the slow
component through the vertical fluxes of zonal momentum.
The frictional effect of these fluxes can be parametrized by
the bulk aerodynamic formula thus producing quadratic drag
on the mean flow.

In rapidly rotating flow, such as the large-scale flow in
the Earth’s atmosphere or ocean, the stress need not be in a
direction precisely opposite to that of the~geostrophic! wind,
as is implied by~5!; rather, it is at an angle because of the
turning of the wind in the Ekman layer. However, this does
not affect the scaling theory presented below. Also, in addi-
tion to these frictional terms, any numerical simulation of~2!
at finite resolution must have a means of removing enstrophy
at high wavenumbers, such as a conventional viscosity, a
hyperviscosity, or a filter, but this is not the focus of this
paper.

III. SCALING THEORY

A. Cascade phenomenology

Suppose that the forcing is isotropic and near
monoscale—i.e., localized in~absolute! wavenumber space,
near wavenumberkf . Then we expect energy to cascade
toward smaller wavenumbers, generating eddies of increas-
ingly larger scale, while enstrophy cascades to the smaller
scales. Nonlinear advective processes slow down as eddy
size grows, so that at some wavenumberka ~the ‘‘arrest’’

wavenumber! energy removal due to friction becomes more
efficient than energy transfer to the larger scales, and thus the
inverse cascade is inhibited.

If ka!k!kf , then classical theory posits that the spec-
tral energy fluxe is constant~through wavenumber space!
and that spectral energy depends only on the rate at which
energy is cascaded,e, and local isotropic wavenumber, lead-
ing to the well-known spectrum

E~k!5Ce2/3k25/3. ~7!

Here C is the Kolmogorov–Kraichnan constant, which ex-
perimentally has been found to lie in the range 4–6~Maltrud
and Vallis,5 Chekhlov et al.,13 Danilov and Gurarie,2 and
Smith et al.9!. The associated inertial time scale is given by

Tadv;@kV~k!#21;k22/3e21/3, ~8!

whereV(k) is the velocity at wavenumberk. The frictional
timescale, based on the same energy spectrum, is

Tdrag~k!;@CdV~k!#21;Cd
21k1/3e21/3, ~9!

for quadratic drag and

Tdrag~k!;r 21, ~10!

for linear drag. There is a qualitative difference between
these two timescales in that the scaling with quadratic drag is
scale selective while with linear drag it is not. The inverse
cascade stops at the scale where dissipative processes be-
come as fast as nonlinear advection. This gives us scalings
for arrest wavenumbers,

ka5Al S r 3

e D 1/2

, ~11!

for linear drag, and

ka5AnCd , ~12!

for quadratic drag, whereAl andAn are nondimensional co-
efficients. In the quadratic drag case the arrest wavenumber
is independentof the strength of forcinge and depends, lin-
early, on the drag coefficient alone.

Relationship~11! has been found to be a satisfactory
approximation by Smithet al.,9 although with a large value
of the nondimensional coefficientAl . Using two slightly dif-
ferent assumptions about the form of the energy spectrum
near the stopping scale, Smithet al.9 offer two predictions
for Al , namelyAl5(3C)3/2'76 andAl5(9C/5)3/2'35 ~us-
ing C56), with slightly better numerical agreement with the
lower value. Using these, we can make a rough prediction for
An , as follows. The nonlinear drag has the approximate form

Dz52Cduvuz, ~13!

whereuvu is the rms velocity of the flow, and indeed a few
test simulations using~13! gave the same scaling behavior as
those with the full drag,~6!. Thus, for any given simulation,
the nonlinear drag behaves as if it were a linear drag with
valuer eff5Cduvu. If uvu is taken to be the velocity at the arrest
scale itself, then

r eff5Cduvu'Cd~3C/2!1/2~e/ka!1/3, ~14!

and using this in~11! gives
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ka'Cd@Al
2/3~3C/2!1/2#5Cd@~3/2!1/2aC3/2#. ~15!

wherea53 or 9/5, being the two values used forAl . This
gives values ofAn532.4 ~corresponding toa59/5! or An

554 ~corresponding toa53!, taking C56. Although the
approximations inherent in this calculation~including that of
the value ofAl) militate against its quantitative accuracy,
they do indicate that a value ofAn much greater than unity is
to be expected.

Held14 discussed scalings analogous to~12! in order to
estimate possible stopping scales for the inverse cascade in
the atmosphere. In the atmospheric boundary layer,cd

;1023 over the ocean surface andh;1 – 2 km, so thatCd

;1026 m21. One might roughly estimate a stopping scale to
be of order a few thousand kilometers. However, the pres-
ence of nondimensional coefficients, the difference between
the geostrophic wind and the near-surface wind, and the
presence of potential energy in the atmosphere will all act to
make such estimates quantitatively unreliable.

B. Turbulent diffusivity

Let us now consider the problem of the turbulent diffu-
sivity of the flows described above. Specifically, we consider
the transport of a passive tracer, with a mean gradient, stirred
by the homogeneous turbulent flow. Thus, the tracer variance
is maintained against high-wavenumber dissipation by a uni-
form meridional gradient, while the tracer itself is stirred by
the eddies. The evolution of the tracer fluctuation,f, is then
described by the equation

]f

]t
1J~c,f!1gv5Df , ~16!

whereg5]f̄/]y is the fixed mean tracer gradient. Note that
~16! follows when we apply the tracer transport equation to
the full tracer field that consists of the mean componentgy
and the fluctuationf. The total amount of tracer quantity is
fixed, and in statistical equilibrium the tracer variance is
maintained by a balance between dissipationDf and the
tracer variance created through the presence of a mean gra-
dient, so that

df2/2

dt
5gvf2Dff50. ~17!

The tracer variance productiongvf occurs primarily at the
energy-containing scale because the velocity spectrum is
peaked there. When the equilibrium state is well established
for both velocity and tracer fields, then at scales within the
energy inertial range dimensional analysis suggests that the
spectrum of tracer variance should have a25/3 slope.

The meridional transport of the tracer may be param-
etrized by the formula

vf5gD, ~18!

which may be taken as adefinitionof the eddy diffusivityD.
Because the flow is homogeneous,D is a constant. If such a
formula is to have any predictive use, we need to be able to
estimateD from the properties of the turbulent flow. SinceD
has dimensions@UL#, we expect that, if the energy spectrum

is sufficiently sharply peaked,L should be the energy-
containing scale, namelyL;ka

21, and U the magnitude of
the velocity at that scale, namelyU5@E(ka)ka#1/2, whereka

is the arrest scale. We then arrive at a scaling for the eddy
diffusivity in the case when quadratic drag arrests the inverse
cascade,

D;e1/3ka
24/3;e1/3Cd

24/3. ~19!

Alternatively, we may simply posit that the tracer trans-
port in such a case is determined solely by the two param-
eters in the problem, namelye andCd . Dimensional analysis
then immediately leads to~19!, noting that the tracer gradient
g may, without loss of generality, be eliminated from the
problem by a simple rescaling off, because~16! is linear in
f.

IV. NUMERICAL EXPERIMENTS

A. Energy spectra and arrest scale

Numerical simulations were performed using a dealiased
two-dimensional spectral model, integrating~2! in a doubly
periodic domain with maximum wavenumber 255 and ap-
proximate equivalent gridpoint resolution 5122. The forcing
was a random Markovian forcing localized at the isotropic
wavenumberkf5160, as in Maltrud and Vallis.5 Coherent
structures are not explicitly suppressed by such a forcing,
and typically may occur at scales comparable to the forcing
itself—see Oetzel.15 Large-scale coherent vortices do not
form Fig. 4. In order to dissipate the enstrophy that cascades
to the small scales, an exponential cutoff filter was applied,
with cutoff wavenumberkcut5200, following Smithet al.9

The first set of experiments that we present here explores
how the arrest scale depends on the drag coefficient and the
energy injection rate. For this purpose we fix the quadratic
drag coefficient at a nondimensional value ofC̃d5Cdkf

21

53.7531023, with an overtilde (̃ ) denoting the nondimen-
sional value, while the energy generation rate is varied by a
factor of 100, so that any changes in the shape of the kinetic
energy spectrum can be attributed to the change in energy
flux. Figure 1 shows steady-state energy spectra for three
runs R1, R2, R3 forced at the wavenumberkf5160, with an
energy generation rate~measured in units ofL2T23) equal to
g50.1, 1, 10, respectively.~The energy generation rate dif-
fers slightly from the inverse cascade rate because some of
the energy input is lost to small-scale dissipation.! In the
inertial rangeka,k,kf all three spectra show good agree-
ment with Kolmogorov’s energy spectrumCe2/3k25/3; the
best fit found for Kolmogorov’s constant is about 5. As ex-
pected, the spectra all seem to peak at the same wavenumber
ka531. To see this most clearly, we rescale every energy
spectrum by the appropriate value ofe22/3. The predicted
value of this energy spectrum is then simplyEnew(k)
5e22/3E(k)5Ck25/3. The rescaled spectra do fall on top of
each other as shown in Fig. 1~b!, even for scales at or larger
than the arrest scale, where friction is expected to be impor-
tant. To contrast this behavior with the high sensitivity to the
change in the energy forcing exhibited by linear drag, we
conducted similar experiments with linear friction. Now lin-
ear drag was fixed atr 50.2 ~again to produce a sensible
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stopping scale! and the energy generation rate assumed val-
uesg50.5, 1, 2 for runs L1, L2, L3 shown in Fig. 2. The
rescaled energy spectra in Fig. 2~b! clearly demonstrate that
rescaled spectra coincide only in the energy inertial range,
and that the energy peaks are well separated and the arrest
wavenumber gets smaller as the generation rate increases, in
agreement with~11!.

The scaling analysis of Sec. III suggests that the arrest
scale of the inverse cascade should depend inversely on the
quadratic drag coefficient@see~12!#. We tested this using a
sequence of experiments in which the energy input rate was
held at a unit value, and the drag was varied, with values of
C̃d in the range (0.625– 12.5)31023. The arrest wavenum-
ber is determined as the wavenumber where the energy spec-
trum peaks. Figure 3 shows the experimental and predicted
arrest wavenumber as a function of the drag coefficients. A
very good linear fit is apparent, in accord with the theory,
with an empirical scaling factor of about 51—that is,ka

'51Cd . Evidently, just as in the case with a linear drag,

Smith et al.,9 and as predicted in Sec. III, a large nondimen-
sional coefficient, relates the two scales. As the value of qua-
dratic drag increases the stopping scale moves closer to the
forcing scale and the underlying assumption of our analysis
that these scales are well separated fails. In this case we
cannot expect the prediction to work, and it is clear from the
plot that the prediction does not hold for stopping wavenum-
bers larger than 0.4kf .

In common with previous simulations of the inverse cas-
cade@see, for example, Fig. 1~e! of Maltrud and Vallis5#, the
vorticity field in our experiments does not show much large-
scale structure~Fig. 4!. In particular, we do not observe the
formation of strong local vorticity maxima at all scales re-
ported by Borue16 in his experiments with an inverse hyper-
viscosity acting as a large-scale dissipation. Borue16 connects
the existence of these vortex structures with significant de-
viation of his energy spectrum from the universalk25/3 form.
In some test cases we extended our integration to 2000 eddy
turnover times, several times longer than is needed for sta-
tistical equilibration, and we found that no pronounced modi-

FIG. 1. ~a! Steady-state kinetic energy spectra obtained by variation of
forcing parametere ~energy flux! while the quadratic drag coefficient is
fixed at Cd50.6; e50.1, 1, 10 for experiments R1, R2, R3. Note that the
stopping scale is independent of the energy flux.~b! The same spectra, but
now rescaled by an appropriate value of the energy flux,e: Enew(k)
5e22/3E(k).

FIG. 2. Same as Fig. 1 but using linear drag to halt the inverse cascade.~a!
Energy spectra with linear drag coefficientr 50.2 and energy forcing of
e50.5, 1, 2 for runs L1, L2, L3. Note that the stopping scale moves to larger
scales as the energy flux increases.~b! Rescaled spectra,Enew(k)
5e22/3E(k).
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fication in the energy spectrum occurs after equilibration was
achieved. Figure 5~a! illustrates this point: it shows the en-
ergy spectrum averaged over the time period following the
equilibration ~solid line! and the maximum and minimum
deviations from the average that occur in this time period,
neither of which occur at either end of that period. That is to
say, there is no trend in the energy spectrum, and we con-
clude that our simulations are well equilibrated.

B. Calculation of diffusivity

In all cases of the numerical integration of the model
with a tracer@i.e., ~2! and~16!#, the meridional tracer gradi-
ent,g, is set to unity. The small-scale dissipation of the tracer

is accomplished by the cutoff filter of the same form as that
used for the enstrophy removal at the small scales. Test cases
indicate that the precise choice of filter~or use of hypervis-
cosity! has little effect on the large-scale eddy transport prop-
erties.

The nondimensionalized tracer variance spectra,

f2/2̄
˜

5g22kf
2f2/2, ~20!

are plotted in Fig. 5~b!. The amplitude of the tracer variance
decreases with decreasing energy levels or increasing drag
coefficients. All of the tracer spectra peak at the wavenumber
that is smaller than the stopping wavenumber. Figure 6
shows diffusivitiesD that are calculated directly from the
model tracer and velocity fields, plotted as a function of the
predicted value. The diffusivity and predicted value are non-
dimensionalized according toD̃5e0

21/3kf
4/3D and e1/3C̃d

24/3

5e1/3Cd
24/3/(e0

1/3kf
24/3), where e0 is the energy input in a

control experiment. As is clear from the graph, a good linear
relationship is obtained between the predicted value and the
experiment for the runs with a well-resolved inertial range.
As we might expect the deviations between the experimental

FIG. 3. The arrest scale, i.e., the spectral energy peak of the inverse cascade,
as a function of the quadratic drag coefficientCd . The circles are experi-
mental values, the solid line is the scaling prediction using~12!.

FIG. 4. A snapshot of the vorticity field in physical space in a typical
integration. The value of vorticity varies in the rangeuz/(e1/3kf

2/3)u<19.2.

FIG. 5. ~a! Time-averaged energy spectrum in the extended run~solid! and
maximum deviations from it~dashed!. ~b! Time-averaged tracer variance
spectra with various values of energy inpute.
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and predicted values grows as the scale separation between
the arrest wavenumber and forcing wavenumber decreases.

V. CONCLUSIONS

A quadratic drag parametrization of the effect of the
boundary layer stresses on a two-dimensional fluid was em-
ployed to arrest the inverse energy cascade of the two-
dimensional turbulent flows. Phenomenological scaling
theory suggests that the arrest scale of the inverse cascade,
and so the energy-containing scale of the turbulence, will
vary inversely with the quadratic drag coefficient and be in-
dependent of the magnitude of the energy input. Numerical
experiments confirm this prediction over a fairly broad pa-
rameter range.

We further predict an eddy diffusivity based on the scale
of the energy-containing eddies and the velocity magnitude
at that scale, giving a transport that depends solely on the
drag coefficient and the rate of energy input. The resulting
scaling for the eddy transport shows good skill in the case in
which a turbulent velocity field stirs a tracer superimposed
on a uniform meridional tracer gradient. In this case there is
a well-defined energy scale and a good scale separation be-
tween the scale of the eddies and the characteristic scale of
the mean gradient of the tracer field~because the mean gra-
dient is linear, this scale separation is, in fact, infinite!. These
two features together likely account for the good perfor-
mance of the diffusive theory.

The main conclusions of our study are thus the follow-
ing: ~i! we confirm the relatively robust nature of the inverse
cascade of two-dimensional turbulence, given a good scale
separation between forcing scales, energy-containing scales,
and domain scales, as well as the relative lack of obvious
large-scale coherent structures in such a flow;~ii ! we find
that a quadratic drag is a physically reasonable way to halt
the inverse cascade, giving rise to an arrest scale, and thus an
energy-containing scale, that depends solely on the drag co-
efficient itself, and so that is independent of the rate of en-
ergy input;~iii ! we find that the transport of a passive tracer
in such a flow is well predicted using phenomenological
scaling arguments, again provided there is a good separation
between the forcing scale, energy-containing scale, and
tracer gradient scale.
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